Nonparametric Regression Approach to Bayesian Estimation
نویسندگان
چکیده
Estimation of unknown parameters and functions involved in complex nonlinear econometric models is a very important issue. Existing estimation methods include generalised method of moments (GMM) by Hansen (1982) and others, efficient method of moments (EMM) by Gallant and Tauchen (1997), Markov chain Monte Carlo (MCMC) method by Chernozhukov and Hong (2003), and nonparametric simulated maximum likelihood estimation (NSMLE) method by Creel and Kristensen (2011), and Kristensen and Shin (2012). Except the NSMLE method, other existing methods do not provide closed–form solutions. This paper proposes non– and semi–parametric based closed– form approximations to the estimation and computation of posterior means involved in complex nonlinear econometric models. We first consider the case where the samples can be independently drawn from both the likelihood function and the prior density. The samples and observations are then used to nonparametrically estimate posterior mean functions. The estimation method is also applied to estimate the posterior mean of the parameter–of–interest on a summary statistic. Both the asymptotic theory and the finite sample study show that the nonparametric estimate of this posterior mean is superior to existing estimates, including the conventional sample mean. This paper then proposes some non– and semi–parametric dimension reductions methods to deal with the case where the dimensionality of either the regressors or the summary statistics is large. Meanwhile, the paper develops a nonparametric estimation method for the case where the samples are obtained from using a resampling algorithm. The asymptotic theory shows that in each case the rate of convergence of the nonparametric estimate based on the resamples is faster than that of the conventional nonparametric estimation method by an order of the number of the resamples. The proposed models and estimation methods are evaluated through using simulated and empirical examples. Both the simulated and empirical examples show that the proposed nonparametric estimation based on resamples outperforms existing estimation methods.
منابع مشابه
THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملBayesian nonparametric regression and density estimation using integrated nested Laplace approximations.
Integrated nested Laplace approximations (INLA) are a recently proposed approximate Bayesian approach to fit structured additive regression models with latent Gaussian field. INLA method, as an alternative to Markov chain Monte Carlo techniques, provides accurate approximations to estimate posterior marginals and avoid time-consuming sampling. We show here that two classical nonparametric smoot...
متن کاملBayesian Nonparametric Models
A Bayesian nonparametric model is a Bayesian model on an infinite-dimensional parameter space. The parameter space is typically chosen as the set of all possible solutions for a given learning problem. For example, in a regression problem the parameter space can be the set of continuous functions, and in a density estimation problem the space can consist of all densities. A Bayesian nonparametr...
متن کاملBayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors
This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function is estimated using the Nadaraya-Watson estimator admitting continuous and discrete regressors. We der...
متن کاملBayesian bandwidth estimation for a nonparametric functional regression model with unknown error density
Error density estimation in a nonparametric functional regression model with functional predictor and scalar response is considered. The unknown error density is approximated by a mixture of Gaussian densities with means being the individual residuals, and variance as a constant parameter. This proposed mixture error density has a form of a kernel density estimator of residuals, where the regre...
متن کاملLocally adaptive function estimation for binary regression models.
In this paper we present a nonparametric Bayesian approach for fitting unsmooth or highly oscillating functions in regression models with binary responses. The approach extends previous work by Lang et al. for Gaussian responses. Nonlinear functions are modelled by first or second order random walk priors with locally varying variances or smoothing parameters. Estimation is fully Bayesian and u...
متن کامل